C2Wind

Foundation Ex 2025

Wind Sea and Swell Waves - Getting it right, and the impact on Fatigue Design

Bristol (UK) 2025-05-20

 Date:
 2025-05-12

 Doc. No:
 002-000-004-01

 Revision:
 2

 Author:
 CBM/MJK

 QC:
 RGA

Content

- 1. Objectives of this presentation
- 2. Metocean conditions approaches
- 3. Impact on fatigue and design
- 4. Conclusions

1. Objectives of this Presentation – The long version

The development of offshore wind farms requires detailed evaluations of wind, sea state, currents, and water level conditions, along with other environmental variables. Despite their interdependence, wind resource and metocean studies are often treated as separate disciplines, carried out by distinct specialists. Yield analysts focus on hub-height wind speeds, often disregarding surface wind and sea state, while metocean experts prioritize surface winds, waves, and currents, with limited attention to the atmospheric boundary layer (ABL) and its influence on turbine behaviour and design load effects.

Technically, wind across the ABL, sea state, and currents are deeply interlinked. Atmospheric stability affects wind-wave correlations and turbulence, and the relative importance of wind-sea and swell waves. Every offshore site presents a unique combination of these phenomena. Accurate characterization of these interactions through measurements and models is essential, yet there are currently no practical guidelines for aligning wind resource and metocean studies. This disconnect can lead to inefficiencies and uncertainties in yield predictions, fatigue load effect assessments, support structure design risk and project planning.

To address this, C2Wind will analyse, several methods in addressing the metocean conditions for design:

- > **Total sea state** assuming no variation of stability conditions
- Separation of wind sea and swell through 2D spectral Hindcast data assuming no variation of stability conditions
- Separation of wind sea and swell through 2D spectral combined with atmospheric stability and account for the coherent ambient turbulence and wind shear.

The three levels of analysis complexity will be analysed and through integrated load analysis using a 15 MW generic turbine model the impact on design will be addressed. The conclusions and impact on assessing and improving alignment between wind resource and metocean studies will be outlined. C2Wind will provide a structured approach for integrating the mentioned disciplines across key phases of project development, including measurement campaigns, modelling efforts and investment cost compared to the design risk and added steel costs.

The above will be done using real-world examples from the North Sea. C2Wind will illustrate how these different approaches by evaluating the same metocean parameters will affect the Fatigue loads and support structure design.

1. Objectives of this Presentation – the short version

What will I learn from his Presentation ?	and design Wind sea / Swell separation + atmospheric stability (Southern North Sea)
What to tell my colleagues?	 Using Total Sea State is insufficient. Separation of Wind sea and Swell is a more correct approach. Southern North Sea example shows significant load and tonnage reduction.
What is the main takeaway?	Considering Wind sea and Swell + atmospheric stability reduces support structure costs.

In the following slides, a detailed overview of each of the hindcast data and modelling assumptions to be applied in Integrated Load Analysis will be outlined.

<u>Case from IJmuiden Ver (Dutch Offshore Wind Farm Zone).</u>

- Metocean and geotech. publicly available from RVO
- Stability assessment based on ERA5
- > The problem:

C2WIND

- Obtaining a <u>unique</u> combination of $\{WS_{Hub}, H_{m0}, T_{p}, \theta\}$
- > Solutions with increasing complexity:
 - **Total sea** state assuming no variation of stability conditions.
 - Separation of wind sea and swell through 2D spectral Hindcast data assuming no variation of stability conditions.
 - Separation of wind sea and swell through 2D spectral combined with atmospheric stability and account for the coherent ambient turbulence and wind shear.

C2Wind ApS | Vesterballevej 5 | 7000 Fredericia | Denmark

*using a modified wave-age criterion

C2WIND

Atmospheric stability classes

Wind Sea – all stabilities

Wind Sea – 3 stability classes

Swell – 3 stability classes

- ✓ Increased correlation between Wind-Sea wave heights and hub height wind speed
- Swell remains uncorrelated with local wind conditions

Swell – all stabilities

40

Examples of NSS characterisation on 2 (out of 12) directional sectors

Total sea state

Unrealistic mean wave directions lead to very large scatter of misalignment

Wind-Sea

Mean Wind-Sea wave components are well correlated with local wind direction

Wind Sea + 3 stability classes

No significant effect of atmospheric stability on misalignment for this site.

In the following slides, overview of the results form the Integrated Load Analysis, its impact on design and its assumptions will be outlined.

Overview of integrated load effect simulations setup. Note that the # Simulations does not explode

Design Load Cases Total Sea Wind Sea and Wind Sea and Swell separation Swell incl. stability separation DLC 1.2 Normal production 22.5 years DLC 7.2 Standstill 10% and 1 year of commissioning 3.5 years Sum of Simulations Other items Seeds 1 wind and wave seed per event Yaw error +6 Deg (only one YE considered) Directional bins 12 directional bins incl. misalignment. Aeroelastic code C2FLEX (Flex5) Over 1st mode Damping: 7.5% Log decr. Tower damper, soil, steel and water Site and layout specific ca. 15% below IEC class C **Turbulence conditions Turbine model** Generic 15 MW 236m rotor Hub Height 154.0 mLAT 1st mode frequency 0.15 Hz Other environmental conditions Wind shear 0.10 Site and layout specific **Turbulence conditions** Water depth 41.5 mLAT NWLR incl. sea level rise 1.1 m

- 5% on fatigue loads compared to Total sea state.

Directional fatigue distribution changes.

Influence of atmospheric stability is limited for this site, but not for others (ex: New England (US)).

C2WIND

> Impact on TP-less Monopile design and **potential steel cost saving.**

5. Conclusions

What should I tell my colleagues?

3.Conclusion

You should tell your colleagues:

Considering atmospheric stability and sea state decomposition into **Wind Sea and Swell** reduces uncertainty and will provide lower support structure costs.

Open for Questions

