

Corrosion Management of Pin-Piles

Challenges for Offshore Wind

Amy Johnstone – Materials & Corrosion Engineer – Kent plc Foundation $Ex - 20^{th}$ May 2025

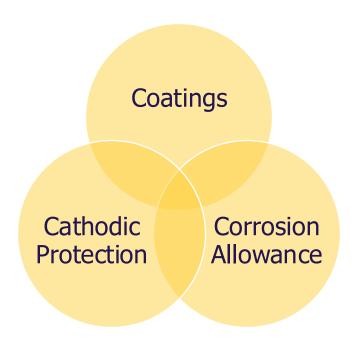
Amy.Johnstone@kentplc.com

Pin Piles: Oil & Gas vs Offshore Wind

Oil & Gas	Offshore Wind
Jacket typically installed before piles	Piles typically installed 1- 2 years before jacket
Single structure Around 4 – 20 piles	Many (100+) structures 3 or 4 piles per jacket 400+ piles
Higher consequences of structural failure	Lower consequences of structural failure

Piles Jacket installed first installed first

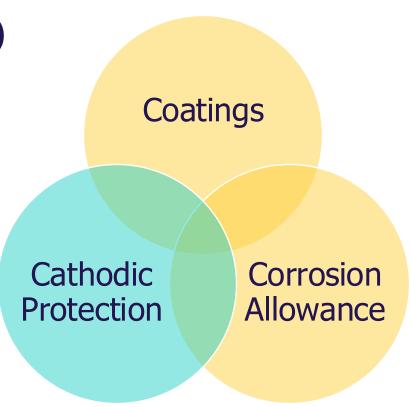
[1] Adapted from ISO 24656:2022


Illustration of wind turbine jacket with two pile options [1]

Risks

Microbially Influenced **Seawater Corrosion** Corrosion (MIC) Wall Thinning Deep Pit Formation **Stress Concentration** Structural Failure Injury or Loss Environmental Financial of Life Damage Damage

Mitigations

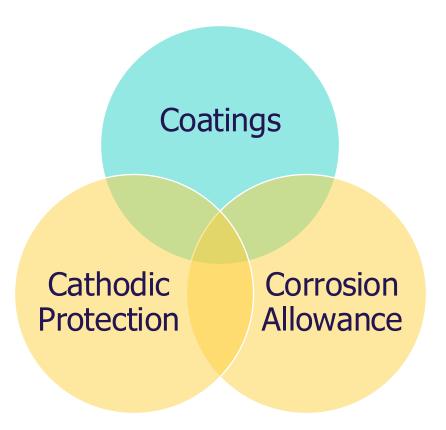

Cathodic Protection (CP)

Benefits

- Mitigates seawater corrosion and MIC (DNV-RP-0416 and ISO 24656).
- Long lifetimes aligned to 30 35 wind farm operation.

Challenges

- Only effective once jacket installed (1-2 years after pile installation)
- Temporary CP complex, costly and must withstand piling operations.
- In period without CP, MIC may lead to rapid formation of deep pits.
- Electrical connectivity to jacket requires attention in design and confirmatory survey.

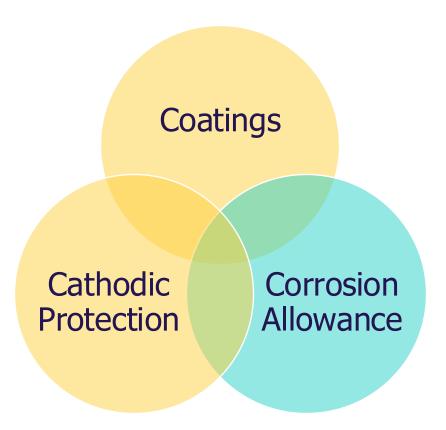

Coatings

Benefits

- Barrier protection against MIC (as per best practice in DNV-RP-0146).
- Effective immediately upon pile installation.
- Choice of durability including sacrificial coatings for temporary protection.

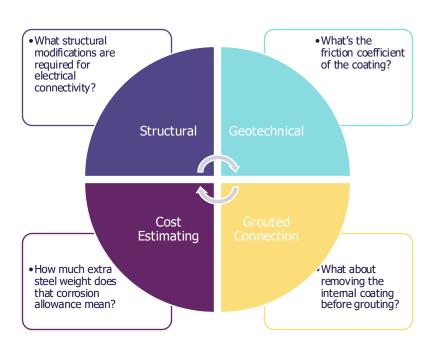
Challenges

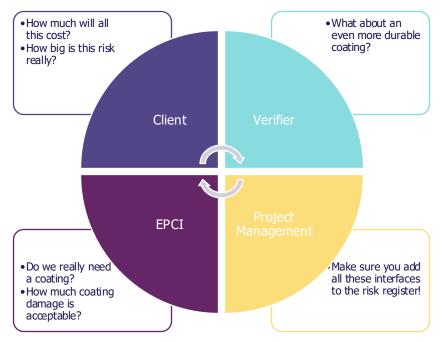
- May be damaged during installation without practicable option for inspection and repair.
- Some coating damage assumed in CP design but localised MIC in exposed area is a residual risk.
- Physical properties may affect pile-driving and grouting operations.
- Additional fabrication cost and complexity.

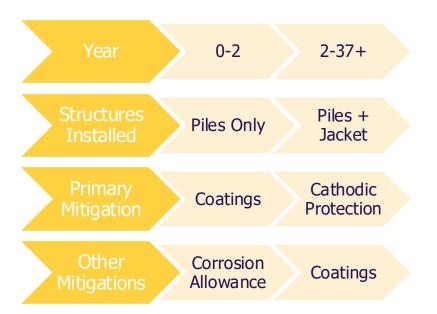

Corrosion Allowance

Benefits

- Mitigates effect of wall thinning prior to jacket installation.
- Effective immediately upon pile installation.
- Simplest corrosion control measure.


Challenges


- Results in larger and thicker piles, increasing costs.
- Does not mitigate effect of high stress concentration factor around deep pits (resulting from MIC).


Corrosion Engineering is Not the Whole Story...

What is the Answer?

For designers, operational data is essential for reducing uncertainty and delivering value.

Amy Johnstone

Materials & Corrosion Engineer – Offshore Structures Amy.Johnstone@kentplc.com

Dr John Edwards

Chief Materials & Corrosion Engineer John.Edwards@kentplc.com

