

Advanced structural and geotechnical analyses for offshore monopile design: a case study

Round Table Format

- Case study to be presented on design of Monopile foundation;
- Specific planned stop points for round table discussions;
- Round table image presented on slides where discussions to be held;
- Please get involved!

1.	2.	3.	4.	
Introduction and Project Background	Overview of Support Structure Design Approach	Overview of Geotechnical Approach	3D FEA and Constitutive Model	
5.	6.	7.	8.	
Geotechnical Analysis and Soil Reaction Curve Development	otechnical Analysis Overview of I Soil Reaction Structural Approach I ve Development		Conclusions and Way Forward	

1. Introduction and Project Background

Project Background

Project Information		
Project Name	seamade	
Project Type	Offshore Wind Farm 235 MW and 252 MW	
Scope of Work	Offshore High Voltage Substation Support Structures	
Owner	otary OFFSHORE ENERGY	
Offshore Contactor	GeoSea Geotechnical & Offshore Solutions	
Fabrication Contractor		
HV Electrical Contractor	engie	

Site Conditions

Metocean Information			
Water depth	35m		
Max. wave height	12.5m		
Wind speed	c. 35 m/s		
Current velocity	1.1 m/s		

Soil Information		
0 – 4 m bsf	Medium dense SAND	
4 – 28 m bsf	High strength CLAY	
28 – 35 m bsf	Medium dense SAND	
35 – 45 m bsf	High strength CLAY	
45 – 65 m bsf	Medium dense SAND	

Structural Concept		
Topside Weight	1150t	
Support Structure	7.5m Diameter Monopile – Transition Piece	
MP-TP Connection	Bolted Flange (grouted skirt)	
Cable Deck	Integrated	
J-tubes	External cage mounted on MP	
Boat Landings	2 boat landings + access infrastructure	
Installation Method	Direct drive on-flange	
Piling Hammer	IHC S-4000	

SEA & LAND

Project Background

2. Overview of Support Structure Design Approach

Overview of Support Structure Design Approach

Global Structure - Limit State Verification

Ultimate and Accidental Limit State

Dynamic excitation

Non-linear pile interaction

Buckling phenomenon

Directional hydrodynamics

Large deflection (P-Δ)

Ringing interaction (hydrodynamic)

Fatigue and Serviceability Limit State

Diffraction

Directional hydrodynamics

Bi-modal swell seas

Significant driving fatigue

Acceleration / motion limits

3. Overview of Geotechnical Approach

Overview of Geotechnical Approach

- Over last 5 to 10 years significant research shown that using design methods typically employed for slender piles of jacket structures not appropriate (e.g. using only p-y curves in 1D model)
- New methods recently proposed include additional soil reaction curves in 1D model (PISA Method)
- This presentation presents real application of PISA approach to monopile design project

Overview of Geotechnical Approach

Improved Monopile Design Process

4. 3D FEA and Constitutive Model

Constitutive Model

What is a constitutive soil model?

 The constitutive soil model is a mathematical representation of the mechanical behaviour of the soil and is fundamental part of FEA of a geotechnical problem.

ERI Displacements Forces Strains Stresses Constitutive Model **Constitutive Model** Source Code UDSM Wrapper Code UMAT Wrapper **HABAQUS** Code SEA & LAND fugro

PROIECT ENGINEERING

Is it important?

<u>Yes</u>... it controls the response of the FEA prediction!

Often Important to implement bespoke soil models to capture the soil response. Library of bespoke models for different soil types needed.

Fugro PIMS Model

- Most existing constitutive models not practical for performing 3D FEA under cyclic loading
- Parallel Iwan Multi-Surface (PIMS) model developed
- Multi-surface models historically not used due to computational cost
- New practical model termed the Parallel Iwan Multi-Surface (PIMS) model developed and implemented in 3D FEA (Plaxis & Abaqus) for design FEA

Reference: Whyte S, Burd H, Martin C, Rattley M. 2019. *A practical total stress multi-surface cyclic degradation plasticity model.* Computers and Geotechnics Journal (Accepted)

 σ_x

Fugro PIMS Model Calibration

IGRO

Fugro PIMS Model Performance

Why go to this trouble?

 Constitutive soil model used within FEA <u>VERY</u> important, particularly for complex soil types outside of standard practice!

Lateral Load, H (kN)

 Fugro PIMS model shows good comparison 450 to field test data.

Constitutive Models

- How important is the constitutive model?
- What models are being used for different soil types etc.?
- Analysis run time issues with complex models?
- Issue of models becoming black box tools making certification difficult?
- Difficulty of parameterisation of models for large wind farms?

5. Geotechnical Analysis and Soil Reaction Curve Development

Seastar Monopile FEA – Monotonic

- Calibration 3D FEA runs performed to develop site specific reaction curves
- 8 hour run time per 3D FEA calibration model
- 1D model shows very good comparison to 3D FEA model
- API p-y approach shown to be highly conservative at Seastar site

Seastar Monopile FEA – Cyclic

1) Calibration to laboratory testing of soils

Monopile Design Methods

- Experiences of using numerically derived reaction curves for design?
- Experience of using PISA method?
- Challenges using such approaches?
- Considering layered soils?
- How to considering cyclic loading?

6. Structural Design Overview

- Iterative pile linearization method (95th percentile)
- Iterative P-Δ loading
- Linear buckling
- Diffraction (MacCamy Fuchs)
- High-order non-linear wave
- 5,800,000 code checks

- Multiple options available for OHVS Structures
- Varying level of complexity and run time
- Limited control over detailed inputs in commercial software
- Which method to use and why?

Time Domain vs Frequency Domain Analysis

Basic Approach vs Advanced Approach

- Constant hydrodynamic coefficients vs. directional and frequency dependent.
- Constant stretching vs Wheeler stretching of wave kinematics
- MacCamy-Fuchs Diffraction (w. phase lag)

Frequency Domain Spectral Analysis

Advanced Approach

- Significantly improved control over the hydrodynamic load calculations.
- Instantaneous directional, Re and KC dependent wave force calculation
- MacCamy-Fuchs diffraction (without phase lag acceleration)

Time Domain Spectral Analysis

Advanced Approach

- Instantaneous directional, Re and KC dependent wave force
- Wheeler stretching of wave kinematics
- Exact solution to MacCamy-Fuchs diffraction (with phase lag acceleration)
- Direction and frequency dependent wave force per structural member

Time Domain – Time Integration

Structural Design

- Structural-geotechnical interfacing issues?
- Understanding of the impacts of linearising pile-soil model. How should this be done?
- State-of-the-art hydrodynamic modelling. What are the key phenomena / areas to look at?
- Limitations of commercial software and their impact on the design. What is the solution?

7. Results and Comparison

Basic API Approach VS. **Advanced PISA-type**

- Significant increase in foundation stiffness (1st mode)
- Significant reduction in monopile design length
- Significant reduction in weight

Time Domain Analysis

Advanced PISA-type
1 st Mode (T _n) = 2.44s ΔTn = -7%
Mudline Moment = 427 MNm ΔM = -10%
Mudline Shear = 14.0 MN ΔV = -6%
Design Penetration = 30m ΔP = -23%
Monopile Weight = 956t ΔW = -10%

Conclusions

- Structural Engineers and Software Developers needs to keep up with geotechnical advancements
- Needs a truly collaborative or JV GeoStructural approach to realise potential full savings
- Demonstrated that significant derisking and cost saving possible
- Further savings possible
- Saving for 1 Monopile scaled to 100 Monopiles are significant

Fatigue Damag

UGRO

1.5

Jugro PIMS - SLPE Time Domain

Fuaro PIMS - Drivin

Monopile Design Optimisation

- Savings being realised in Europe?
- Further optimisation possible?
- Better understanding of cyclic loading needed?
- Next steps?

