DNV·GL

ENERGY

Certification Foundation Ex Conference

D Butterworth 1st October 2019

Concept

Complete certification system for the renewables industry DNV GL Certification Scheme **Onshore Wind** • • IEC Certification Scheme

BLES CERTIN RENER DNV.GL Certificate no. TC-DNVGL-SE-0441-01234-0

DNV GL service documents

- **Offshore Wind** •
- **Offshore Substations** •
- Floating Offshore Wind ٠
- Solar Power Plants •
- Energy Storage Systems •
- Tidal & Wave devices and arrays

- Design Ass. GCC
- Manufacture Shop
- Survey

Lifetime

- approvals
- In service • Training
- Lifetime • Fire
 - Component
- protection
- certification Markings

>30 DNV GL service

documents

Service specifications

DNVGL-SE-0441 Type and component certification of wind turbines DNVGL-SE-0190 Project certification of wind power plants DNVGL-SE-0074 Type and component certification of wind turbines according to IEC 61400-22

DNVGL-SE-0073 Project certification of wind farms according to IEC 61400-22

DNVGL-SE-0436 Shop approval in renewable energy DNVGL-SE-0439 Certification of condition monitoring

DIVGL-SE-0439 Certification of condition monitoring

DNVGL-SE-0077 Certification of fire protection systems for wind turbines DNVGL-SE-0263 Certification of lifetime extension of wind turbines

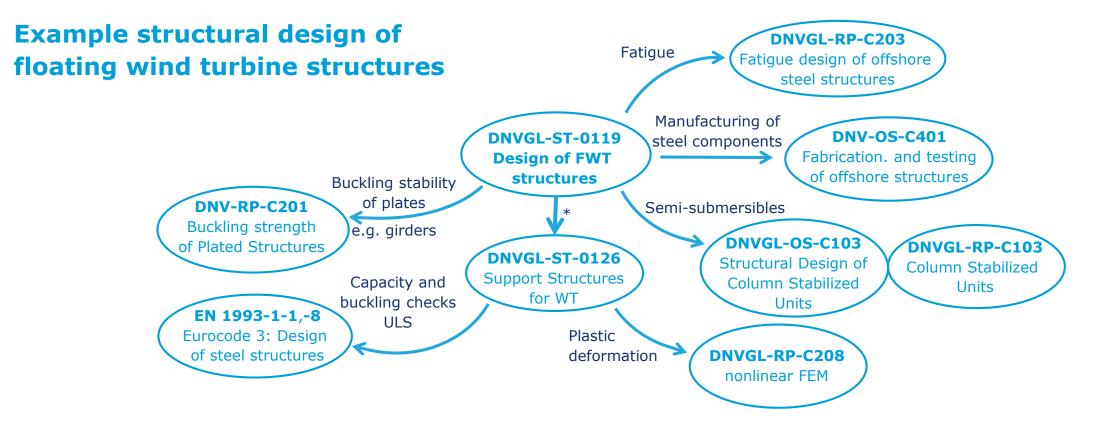
Standards

DNVGL-ST-0376 Rotor blades for wind turbines DNVGL-ST-0437 Loads and site conditions for wind turbines DNVGL-ST-0438 Control and protection systems for wind turbines DNVGL-ST-0126 Support structures for wind turbines DNVGL-ST-0361 Machinery for wind turbines DNVGL-ST-0054 Transport and installation of wind power plants DNVGL-ST-0262 Lifetime extension of wind turbines

Recommended practices

DNVGL-RP-0175 Icing of Wind Turbines DNVGL-RP-0363 Extreme temperature conditions for wind turbines DNVGL-RP-0416 Corrosion protection for wind turbines DNVGL-RP-0440 Electromagnetic compatibility of wind turbines DNVGL-SE-0448 Certification of service and maintenance activities in the wind energy industry

DNVGL-SE-0176 Certification of navigation and aviation aids of offshore wind farms


DNVGL-SE-0420 Certification of meteorological masts DNVGL-SE-0422 Certification of floating wind turbines DNVGL-SE-0078 Project certification of photovoltaic power plants DNVGL-SE-0163 Certification of tidal turbines and arrays DNVGL-SE-0120 Certification of wave energy devices and arrays ISI Development of third party services for energy storage systems

DNVGL-ST-0119 Floating structures for wind turbines DNVGL-ST-0145 Offshore substations DNVGL-SE-0124 Certification of grid code compliance DNVGL-ST-0125 Grid Code Compliance DNVGL-ST-0076 Electrical installations for wind turbines DNVGL-ST-0359 Subsea power cables DNVGL-ST-0164 Tidal turbines

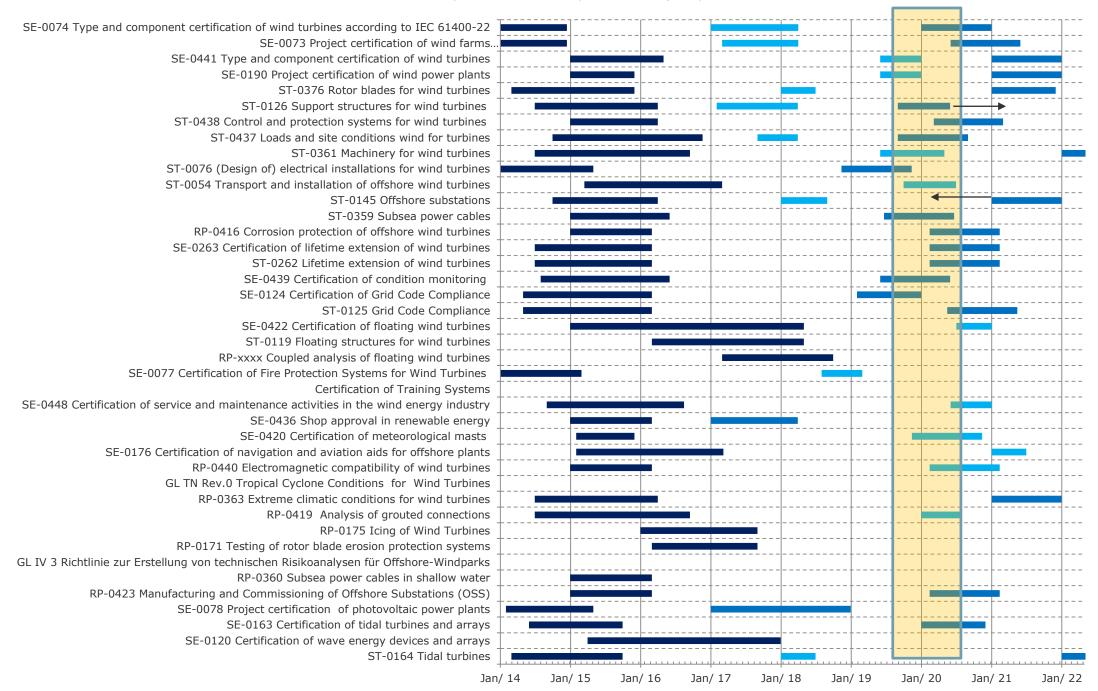

```
DNVGL-RP-0423 Manufacturing and commissioning of offshore
substations
DNVGL-RP-0419 Analysis of grouted connections
DNVGL-RP-0360 Subsea power cables in shallow water
DNVGL-RP-0171 Testing of rotor blade erosion protection systems
DNVGL-RP-0286 Coupled analysis of floating wind turbines
```

DNV GL system of interlinked standards

* The requirements for the structural design given in DNVGL-ST-0126 apply to FWT structures, except the deviations and additional requirements given in DNVGL-ST-0119 Section 7

Maintenance 2019

ST-0145 Offshore Substations


SE-0439 Certification of condition monitoring

SE-0190 Project certification

Planned maintenance in 2020

- Grid code compliance requirements
- Machinery components for wind turbines
- Type certification
- Corrosion Protection

WTG Foundation Design DNVGL-ST-0126 & associated standards

- Bolted Connection Design (new RP in progress)
- Early Age Cycling (Reviewing options for possible JIP)
- Earthquake (ACE JIP due to commence)
- ALS for projects with SOV
- Damping improved guidance for jackets
- Multiaxial stresses and fatigue
- SN Curves and automated welding
- Probabilistic Design Methods
- Inspection & Reliability Guidance
- Steel Material Tables alignment with EN 1993 and 10225

DNVGL-ST-0145 Update 2019

Formal Safety Assessment	Clarifications on requirements. Overall safety will be achieved is prescriptive requirements are met. If not then a Risk Based Assessment is required		
Arrangement Principles	Removal or requirement for 2 Transformers, focus on availability, N-1 criteria must be met		
Structural Design	Air gap to apply to 100year wave 1m or 20% Hs100. ALS to 10k wave crest. Steel Table updated to reflect new 10225 update		
Electrical Design	Islanded condition clarifications, Not automatically an emergency, emergency services must remain available for seven days, For Manned – Aux power autonomous, for unmanned external source acceptable		
Fire and Explosion Protection	More details on materials and requirements for both passive and active systems		
Emergency Response	Clarifications on provisions for Manned & Unmanned facilities and requirements		

Development of new services and standards via JIP's or collaborative projects with industry partners and academia

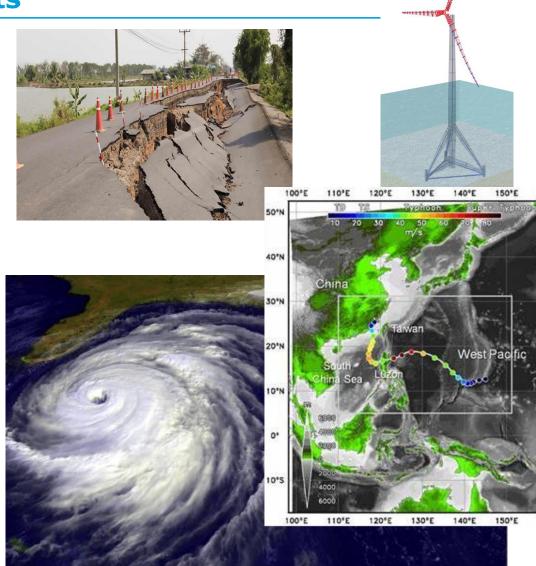
- Meet customers/market expectations
- Use best technology available
- Drive improvements in design approach and lower costs

DNVGL-RP-xxxx Design requirements for wind turbines in seismic and cyclone areas – ACE JIP DNVGL-RP-xxxx LIDAR based turbulence intensity measurement – LIDAR-TI JIP

DNVGL-RP-xxxx Comprehensive model for rain erosion analysis - JIP COBRA DNVGL RP-xxxx Superconducting drivetrains of wind turbines – EcoSwing (EU H2020 project) DNVGL-RP-xxxx Scour protection – HaSPro JIP DNVGL-RP-xxxx Energy storage system safety - tbd DNVGL-RP-xxxx Bolted Connections

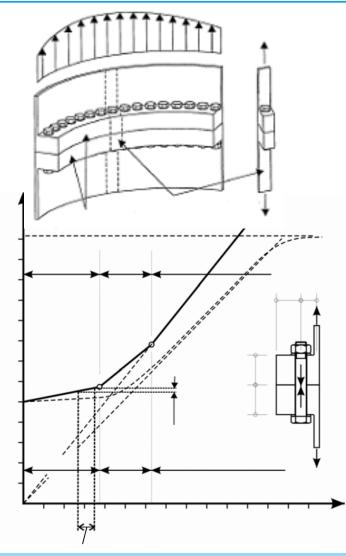
Backgrounds and pains – design of offshore wind turbines in new markets

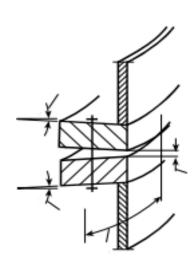
□ Earthquakes


- Uncertainty in design conditions: geotechnical conditions, combination of wind and earthquake loads.
- Inconsistency in approaches used to design for Earthquakes.
- International/Local codes & standards not sufficiently detailed/harmonized

□ Cyclones

10 DNV GL ©


- □ Uncertainty in extreme wind speed.
- Uncertainty in transferring local building code requirements to large offshore turbines
- □ Detailed modelling is expensive and uncertain.
- □ Lack of measurements available for calibration/verification of detailed models.
- □ Statistical treatment is difficult.


27 August 2019

DNV.GL

Tower Bolts

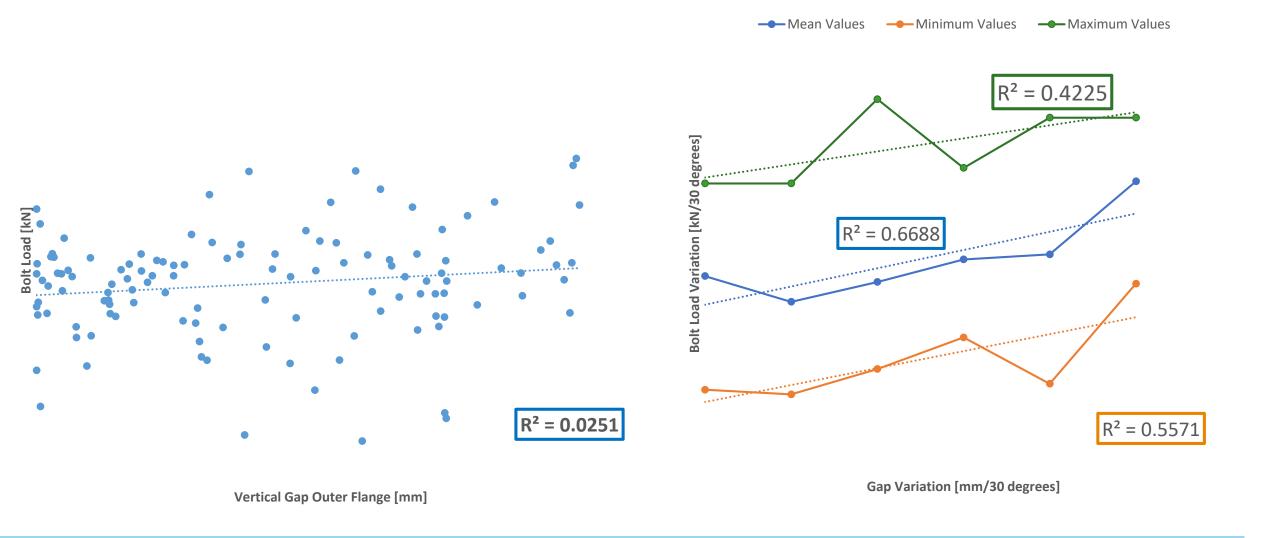
Design Assumptions vs Execution

11 DNV GL ©

Wind Turbine Towers

27 August 2019

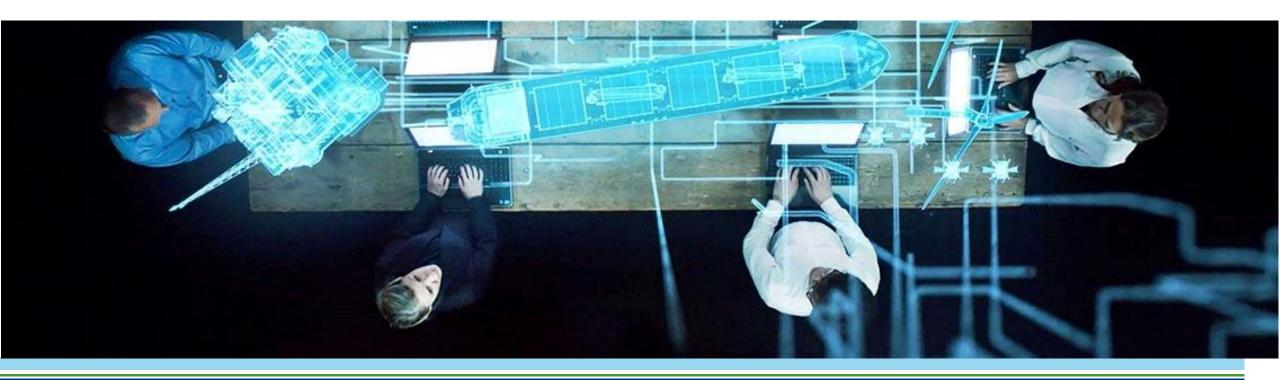
DNV·GL


Short term preload losses

Preload loss, 12 hours(Yield	torque gradient	
Average bolt preload loss μ	0%	$M_1 \xrightarrow{\text{threshold torque}} Safety gradient$
Worst case bolt preload loss (97.7% value)	-15%	angle count angle of rotation θ

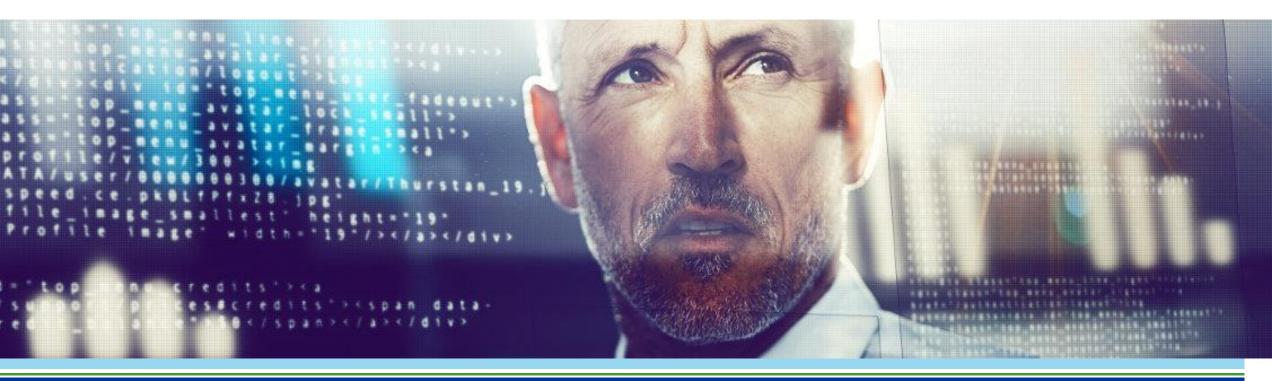
Preload loss, 12 hours (Hydraulic tensioning)					
Average bolt preload loss $\boldsymbol{\mu}$	-1%	Step 1	Step 2	Step 3	Step 4
Worst case bolt preload loss (97.7% value)	-23%				

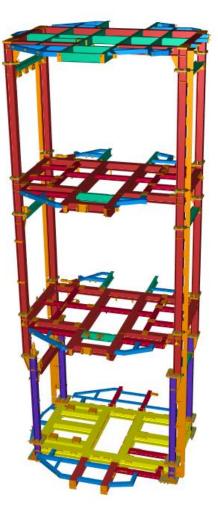
Preload loss, 12 hours (Torque	M limiting safety torque	
Average bolt preload loss μ	-0.1%	M1 threshold torque
Worst case bolt preload loss (97.7% value)	-21%	tightening angle angle of rotation ∂



DNVGL

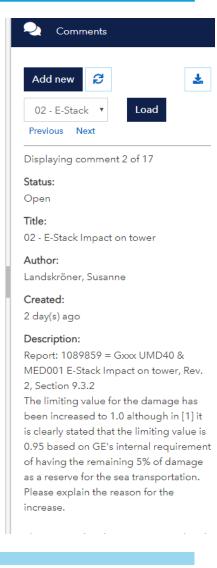
Veracity - an Open Industry Platform


- Marketplace for digital services, data and analytics
- Functionality to securely share your data container
- Functionality to create a data container for your data


DNVGL

MyCertificate

- See at a glance what has been certified and what hasn't
- Instantly check certification status of all components in a new configuration
- Self-generated certificate includes QR codes for verifying their authenticity


Assessment of secondary steel components for wind turbines by stp-files

Development of an online visualization and communication tool for the exchange of certification comments

Change in the internal certification process from technical drawings to the use of stp- or gnx-files for basis of parallel calculation

Wind Turbine Towers

DNVGL

Thanks for Listening – any ideas for future improvements and/or feedback please get in touch

Daniel.butterworth@dnvgl.com +44 7825 50 5854

www.dnvgl.com

SAFER, SMARTER, GREENER

The trademarks DNV GL[®], DNV[®], the Horizon Graphic and Det Norske Veritas[®] are the properties of companies in the Det Norske Veritas group. All rights reserved.

17 DNV GL ©

